Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Appl Environ Microbiol ; 90(4): e0235523, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38535171

RESUMEN

Halophyte-based remediation emerges as a novel strategy for ameliorating saline soils, offering a sustainable alternative to conventional leaching methods. While bioremediation is recognized for its ability to energize soil fertility and structure, the complex interplays among plant traits, soil functions, and soil microbial diversity remain greatly unknown. Here, we conducted a 5-year field experiment involving the continuous cultivation of the annual halophyte Suaeda salsa in saline soils to explore soil microbial diversity and their relationships with plant traits and soil functions. Our findings demonstrate that a decline in soil salinity corresponded with increases in the biomass and seed yield of S. salsa, which sustained a consistent seed oil content of approximately 22% across various salinity levels. Significantly, prolonged cultivation of halophytes substantially augmented soil microbial diversity, particularly from the third year of cultivation. Moreover, we identified positive associations between soil multifunctionality, seed yield, and taxonomic richness within a pivotal microbial network module. Soils enriched with taxa from this module showed enhanced multifunctionality and greater seed yields, correlating with the presence of functional genes implicated in nitrogen fixation and nitrification. Genomic analysis suggests that these taxa have elevated gene copy numbers of crucial functional genes related to nutrient cycling. Overall, our study emphasizes that the continuous cultivation of S. salsa enhances soil microbial diversity and recovers soil multifunctionality, expanding the understanding of plant-soil-microbe feedback in bioremediation.IMPORTANCEThe restoration of saline soils utilizing euhalophytes offers a viable alternative to conventional irrigation techniques for salt abatement and soil quality enhancement. The ongoing cultivation of the annual Suaeda salsa and its associated plant traits, soil microbial diversity, and functionalities are, however, largely underexplored. Our investigation sheds light on these dynamics, revealing that cultivation of S. salsa sustains robust plant productivity while fostering soil microbial diversity and multifunctionality. Notably, the links between enhanced soil multifunctionality, increased seed yield, and network-dependent taxa were found, emphasizing the importance of key microbial taxa linked with functional genes vital to nitrogen fixation and nitrification. These findings introduce a novel understanding of the role of soil microbes in bioremediation and advance our knowledge of the ecological processes that are vital for the rehabilitation of saline environments.


Asunto(s)
Chenopodiaceae , Suelo , Suelo/química , Solución Salina , Cloruro de Sodio , Nitrificación , Plantas Tolerantes a la Sal
2.
Science ; 383(6682): eadh4859, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38301022

RESUMEN

Ribozymes are catalytic RNAs with diverse functions including self-splicing and polymerization. This work aims to discover natural ribozymes that behave as hydrolytic and sequence-specific DNA endonucleases, which could be repurposed as DNA manipulation tools. Focused on bacterial group II-C introns, we found that many systems without intron-encoded protein propagate multiple copies in their resident genomes. These introns, named HYdrolytic Endonucleolytic Ribozymes (HYERs), cleaved RNA, single-stranded DNA, bubbled double-stranded DNA (dsDNA), and plasmids in vitro. HYER1 generated dsDNA breaks in the mammalian genome. Cryo-electron microscopy analysis revealed a homodimer structure for HYER1, where each monomer contains a Mg2+-dependent hydrolysis pocket and captures DNA complementary to the target recognition site (TRS). Rational designs including TRS extension, recruiting sequence insertion, and heterodimerization yielded engineered HYERs showing improved specificity and flexibility for DNA manipulation.


Asunto(s)
División del ADN , Endonucleasas , ARN Catalítico , Animales , Microscopía por Crioelectrón , Endonucleasas/química , Endonucleasas/genética , Hidrólisis , Intrones , Conformación de Ácido Nucleico , Empalme del ARN , ARN Catalítico/química , ARN Catalítico/genética
3.
Nanomaterials (Basel) ; 14(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38251115

RESUMEN

Super-hydrophilic and oleophobic functional materials can prevent pollution or adsorption by repelling oil, and have good circulation. However, traditional strategies for preparing these functional materials either use expensive fabrication machines or contain possibly toxic organic polymers, which may prohibit the practical application. The research of multifunctional ZnO microstructures or nanoarrays thin films with super-hydrophilic, antifouling, and antibacterial properties has not been reported yet. Moreover, the exploration of underwater oleophobic and self-cleaning antifouling properties in ZnO micro/nanostructures is still in its infancy. Here, we prepared ZnO microstructured films on fluorine-doped tin oxide substrates (F-ZMF) for the development of advanced self-cleaning type super-hydrophilic and oleophobic materials. With the increase of the accelerators, the average size of the F-ZMF microstructures decreased. The F-ZMF shows excellent self-cleaning performance and hydrophilic (water contact angle ≤ 10°) and oleophobic characteristics in the underwater antifouling experiment. Under a dark condition, F-ZMF-4 showed good antibacterial effects against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with inhibition rates of 99.1% and 99.9%, respectively. This study broadens the application scope of ZnO-based material and provides a novel prospect for the development of self-cleaning super-hydrophilic and oleophobic materials.

4.
J Phys Chem B ; 127(49): 10469-10477, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38018897

RESUMEN

Antifreeze proteins (AFPs) are biodegradable inhibitors that effectively prevent the formation of natural gas hydrates that block pipelines. In this study, molecular dynamics simulations were employed to establish a kinetic model of the hyperactive insect antifreeze protein (Tenebrio molitor, TmAFP) and its mutants to inhibit the growth of sI natural methane hydrate. Simulations revealed that the hydrophobic and hydrophilic groups of threonine (Thr) residues at hydrate-binding sites played a synergistic role in binding hydrates. The hydrophobic groups anchored TmAFP to the hydrate surface through residues Thr39-Thr65 by migrating pendant hydrophobic methyl groups to the hydrate semicages. The hydrophilic groups stabilized TmAFP by hydrogen bonding with water molecules and integrating them into a quasi-hydrate structure, which more effectively inhibited hydrate growth. The results suggest that the hydrate growth inhibition is attributed to both the shape complementarity and the flexibility of binding residues. The synergy between hydrophobic and hydrophilic groups provides guidance for the design of more effective hydrate inhibitors.


Asunto(s)
Hielo , Agua , Agua/química , Proteínas Anticongelantes/química , Simulación de Dinámica Molecular , Sitios de Unión
6.
Chin Med Sci J ; 38(3): 178-190, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37622313

RESUMEN

Objective To explore the potential biological functions and prognostic prediction values of non-apoptotic regulated cell death genes (NARCDs) in lung adenocarcinoma.Methods Transcriptome data of lung adenocarcinoma were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. We identified differentially expressed NARCDs between lung adenocarcinoma tissues and normal tissues with R software. NARCDs signature was constructed with univariate Cox regression analysis and the least absolute shrinkage and selection operator Cox regression. The prognostic predictive capacity of NARCDs signature was assessed by Kaplan-Meier survival curve, receiver operating characteristic curve, and univariate and multivariate Cox regression analyses. Functional enrichment of NARCDs signature was analyzed with gene set variation analysis, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes. In addition, differences in tumor mutational burden, tumor microenvironment, tumor immune dysfunction and exclusion score, and chemotherapeutic drug sensitivity were analyzed between the high and low NARCDs score groups. Finally, a protein-protein interaction network of NARCDs and immune-related genes was constructed by STRING and Cytoscape software. Results We identified 34 differentially expressed NARCDs associated with the prognosis, of which 16 genes (ATIC, AURKA, CA9, ITGB4, DDIT4, CDK5R1, CAV1, RRM2, GAPDH, SRXN1, NLRC4, GLS2, ADRB2, CX3CL1, GDF15, and ADRA1A) were selected to construct a NARCDs signature. NARCDs signature was identified as an independent prognostic factor (P < 0.001). Functional analysis showed that there were significant differences in mismatch repair, p53 signaling pathway, and cell cycle between the high NARCDs score group and low NARCDs score group (all P < 0.05). The NARCDs low score group had lower tumor mutational burden, higher immune score, higher tumor immune dysfunction and exclusion score, and lower drug sensitivity (all P < 0.05). In addition, the 10 hub genes (CXCL5, TLR4, JUN, IL6, CCL2, CXCL2, ILA, IFNG, IL33, and GAPDH) in protein-protein interaction network of NARCDs and immune-related genes were all immune-related genes. Conclusion The NARCDs prognostic signature based on the above 16 genes is an independent prognostic factor, which can effectively predict the clinical prognosis of patients of lung adenocarcinoma and provide help for clinical treatment.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Muerte Celular Regulada , Humanos , Pronóstico , Apoptosis , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Microambiente Tumoral
7.
Eur J Surg Oncol ; 49(11): 106975, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37474342

RESUMEN

BACKGROUND: There is no consensus on whether adjuvant chemotherapy (AC) is effective for hepatoid adenocarcinoma of the stomach (HAS). The aim of this study was to investigate the relationship between AC and the long-term prognosis of patients with HAS. METHODS: The clinicopathological data of 239 patients with primary HAS who underwent radical surgery from April 1, 2004 to December 31, 2019 in 14 centers in China were retrospectively analyzed. Patients were divided into the AC group (127 patients) and the nonadjuvant chemotherapy (NAC) group (112 patients). RESULTS: Kaplan‒Meier (KM) analysis showed that there were no significant differences in the 1-year3-year overall survival rate (OS) and 1-year, 3-year recurrence-free survival rate (RFS) between the AC group and the NAC group (1-year OS: 85.6% vs. 79.8%, 3-year OS: 59.8% vs. 62.4%, 1-year RFS: 69.8% vs. 74.4%, 3-year RFS: 57.2% vs. 55.9%, all P > 0.05). The subpopulation treatment effect pattern plots (STEPP) did not show treatment heterogeneity of AC in patients with HAS. The proportions of local recurrence and metastasis sites in the two groups were similar. Although the smoothed hazard curves of the NAC and AC groups crossed, the peak hazard time was later in the AC group (5.9 and 4.7 months), and the peak hazard rate was lower (0.032 and 0.038, P = 0.987). CONCLUSION: The current AC regimen may not significantly improve the survival of patients with HAS after radical surgery.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Humanos , Pronóstico , Estudios Retrospectivos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/cirugía , Quimioterapia Adyuvante , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/cirugía
8.
J Nanobiotechnology ; 21(1): 226, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37461031

RESUMEN

Medial arterial calcification (MAC), a systemic vascular disease different from atherosclerosis, is associated with an increased incidence of cardiovascular events. Several studies have demonstrated that ambient temperature is one of the most important factors affecting cardiovascular events. However, there has been limited research on the effect of different ambient temperatures on MAC. In the present study, we showed that cold temperature exposure (CT) in mice slowed down the formation of vitamin D (VD)-induced vascular calcification compared with room temperature exposure (RT). To investigate the mechanism involved, we isolated plasma-derived exosomes from mice subjected to CT or RT for 30 days (CT-Exo or RT-Exo, respectively). Compared with RT-Exo, CT-Exo remarkably alleviated the calcification/senescence formation of vascular smooth muscle cells (VSMCs) and promoted autophagy by activating the phosphorylation of AMP-activated protein kinase (p-AMPK) and inhibiting phosphorylation of mammalian target of rapamycin (p-mTOR). At the same time, CT-Exo promoted autophagy in ß-glycerophosphate (ß-GP)-induced VSMCs. The number of autophagosomes and the expression of autophagy-related proteins ATG5 and LC3B increased, while the expression of p62 decreased. Based on a microRNA chip microarray assay and real-time polymerase chain reaction, miR-320a-3p was highly enriched in CT-Exo as well as thoracic aortic vessels in CT mice. miR-320a-3p downregulation in CT-Exo using AntagomiR-320a-3p inhibited autophagy and blunted its anti-calcification protective effect on VSMCs. Moreover, we identified that programmed cell death 4 (PDCD4) is a target of miR-320a-3p, and silencing PDCD4 increased autophagy and decreased calcification in VSMCs. Treatment with CT-Exo alleviated the formation of MAC in VD-treated mice, while these effects were partially reversed by GW4869. Furthermore, the anti-arterial calcification protective effects of CT-Exo were largely abolished by AntagomiR-320a-3p in VD-induced mice. In summary, we have highlighted that prolonged cold may be a good way to reduce the incidence of MAC. Specifically, miR-320a-3p from CT-Exo could protect against the initiation and progression of MAC via the AMPK/mTOR autophagy pathway.


Asunto(s)
Aterosclerosis , MicroARNs , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Antagomirs , Serina-Treonina Quinasas TOR , Autofagia , MicroARNs/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
9.
Chem Sci ; 14(22): 5945-5955, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37293662

RESUMEN

Chemical modifications of CRISPR-Cas nucleases help decrease off-target editing and expand the biomedical applications of CRISPR-based gene manipulation tools. Here, we found that epigenetic modifications of guide RNA, such as m6A and m1A methylation, can effectively inhibit both the cis- and trans-DNA cleavage activities of CRISPR-Cas12a. The underlying mechanism is that methylations destabilize the secondary and tertiary structure of gRNA which prevents the assembly of the Cas12a-gRNA nuclease complex, leading to decreased DNA targeting ability. A minimum of three adenine methylated nucleotides are required to completely inhibit the nuclease activity. We also demonstrate that these effects are reversible through the demethylation of gRNA by demethylases. This strategy has been used in the regulation of gene expression, demethylase imaging in living cells and controllable gene editing. The results demonstrate that the methylation-deactivated and demethylase-activated strategy is a promising tool for regulation of the CRISPR-Cas12a system.

10.
Cell ; 186(13): 2865-2879.e20, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37301196

RESUMEN

Retroelements are the widespread jumping elements considered as major drivers for genome evolution, which can also be repurposed as gene-editing tools. Here, we determine the cryo-EM structures of eukaryotic R2 retrotransposon with ribosomal DNA target and regulatory RNAs. Combined with biochemical and sequencing analysis, we reveal two essential DNA regions, Drr and Dcr, required for recognition and cleavage. The association of 3' regulatory RNA with R2 protein accelerates the first-strand cleavage, blocks the second-strand cleavage, and initiates the reverse transcription starting from the 3'-tail. Removing 3' regulatory RNA by reverse transcription allows the association of 5' regulatory RNA and initiates the second-strand cleavage. Taken together, our work explains the DNA recognition and RNA supervised sequential retrotransposition mechanisms by R2 machinery, providing insights into the retrotransposon and application reprogramming.


Asunto(s)
ARN , Retroelementos , ARN/metabolismo , División del ADN , ADN Polimerasa Dirigida por ARN/metabolismo , Transcripción Reversa
11.
Chem Sci ; 14(14): 3839-3851, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37035707

RESUMEN

Cas12a is one of the most commonly used Cas proteins for genome editing and gene regulation. The first key step for Cas12a to fulfill its function is to search for its target among numerous nonspecific and off-target sites. Cas12a utilizes one-dimensional diffusion along the contour of dsDNA to efficiently search for its target. However, due to a lack of structural information of the transient diffusing complex, the residues mediating the one-dimensional diffusion of Cas12a are unknown. Here, combining single-molecule and ensemble assays, we found that nonspecific interactions between Cas12a and dsDNA at the PAM downstream cause asymmetric target search regions of Cas12a flanking the PAM site, which guided us to identify a positive-charge-enriched alpha helix in the REC2 domain serving as a conserved element to facilitate one-dimensional diffusion-driven target search of AsCas12a, LbCas12a and FnCas12a. In addition, this alpha helix assists the target cleavage process of AsCas12a via stabilizing the cleavage states. Thus, neutralizing positive charges within this helix not only significantly slows target search but also enhances the specificity of AsCas12a both in vitro and in living cells. Similar behaviors are detected when residues mediating diffusion of SpCas9 are mutated. Thus, engineering residues mediating diffusion on dsDNA is a new avenue to optimize and enrich the versatile CRISPR-Cas toolbox.

12.
Cell Death Differ ; 30(7): 1648-1665, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37117273

RESUMEN

Cancer stem cells (CSCs) are a minority population of cancer cells with stemness and multiple differentiation potentials, leading to cancer progression and therapeutic resistance. However, the concrete mechanism of CSCs in hepatocellular carcinoma (HCC) remains obscure. We found that in advanced HCC tissues, collagen I was upregulated, which is consistent with the expression of its receptor DDR1. Accordingly, high collagen I levels accompanied by high DDR1 expression are associated with poor prognoses in patients with HCC. Collagen I-induced DDR1 activation enhanced HCC cell stemness in vitro and in vivo. Mechanistically, DDR1 interacts with CD44, which acts as a co-receptor that amplifies collagen I-induced DDR1 signaling, and collagen I-DDR1 signaling antagonized Hippo signaling by facilitating the recruitment of PP2AA to MST1, leading to exaggerated YAP activation. The combined inhibition of DDR1 and YAP synergistically abrogated HCC cell stemness in vitro and tumorigenesis in vivo. A radiomic model based on T2 weighted images can noninvasively predict collagen I expression. These findings reveal the molecular basis of collagen I-DDR1 signaling inhibiting Hippo signaling and highlight the role of CD44/DDR1/YAP axis in promoting cancer cell stemness, suggesting that DDR1 and YAP may serve as novel prognostic biomarkers and therapeutic targets in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Vía de Señalización Hippo , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Colágeno/uso terapéutico , Receptor con Dominio Discoidina 1/metabolismo
13.
Bull Entomol Res ; 113(3): 412-418, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36866720

RESUMEN

One of the most common harmful mites in edible fungi is Histiostoma feroniarum Dufour (Acaridida: Histiostomatidae), a fungivorous astigmatid mite that feeds on hyphae and fruiting bodies, thereby transmitting pathogens. This study examined the effects of seven constant temperatures and 10 types of mushrooms on the growth and development of H. feroniarum, as well as its host preference. Developmental time for the total immature stages was significantly affected by the type of mushroom species, ranging from 4.3 ± 0.4 days (reared on Pleurotus eryngii var. tuoliensis Mou at 28°C) to 17.1 ± 2.3 days (reared on Auricularia polytricha Sacc. at 19°C). The temperature was a major factor in the formation of facultative heteromorphic deutonymphs (hypopi). The mite entered the hypopus stage when the temperature dropped to 16°C or rose above 31°C. The growth and development of this mite were significantly influenced by the type of species and variety of mushrooms. Moreover, the fungivorous astigmatid mite preferred to feed on the 'Wuxiang No. 1' strain of Lentinula edodes (Berk.) Pegler and the 'Gaowenxiu' strain of P. pulmonarius (Fr.) Quél., with a shorter development period compared with that of feeding on other strains. These results therefore quantify the effect of host type and temperature on fungivorous astigmatid mite growth and development rates, and provide a reference for applying mushroom cultivar resistance to biological pest control.


Asunto(s)
Agaricales , Ácaros , Pleurotus , Animales , Temperatura
14.
Cell Res ; 33(3): 229-244, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36650285

RESUMEN

CRISPR-Cas modules serve as the adaptive nucleic acid immune systems for prokaryotes, and provide versatile tools for nucleic acid manipulation in various organisms. Here, we discovered a new miniature type V system, CRISPR-Casπ (Cas12l) (~860 aa), from the environmental metagenome. Complexed with a large guide RNA (~170 nt) comprising the tracrRNA and crRNA, Casπ (Cas12l) recognizes a unique 5' C-rich PAM for DNA cleavage under a broad range of biochemical conditions, and generates gene editing in mammalian cells. Cryo-EM study reveals a 'bracelet' architecture of Casπ effector encircling the DNA target at 3.4 Å resolution, substantially different from the canonical 'two-lobe' architectures of Cas12 and Cas9 nucleases. The large guide RNA serves as a 'two-arm' scaffold for effector assembly. Our study expands the knowledge of DNA targeting mechanisms by CRISPR effectors, and offers an efficient but compact platform for DNA manipulation.


Asunto(s)
ADN , Edición Génica , ADN/genética , Endonucleasas/genética , Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas
15.
Eur J Surg Oncol ; 49(5): 1001-1008, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36585301

RESUMEN

BACKGROUND: Repeat hepatectomy (RH) and microwave ablation (MWA) are frequently used procedures for the treatment of recurrent hepatocellular carcinoma (HCC) after curative resection. This study aimed to compare the long-term outcomes of RH and MWA for solitary and small HCC with early or late recurrence. METHOD: This retrospective study enrolled patients who underwent RH or MWA for solitary and small (≤3 cm) recurrent HCC at Tongji hospital between April 2006 and December 2020. Propensity score matching (PSM) was further employed to analyze the prognosis of different treatment methods. RESULTS: A total of 256 patients were analyzed, of whom 94 and 162 underwent RH and MWA, respectively. The overall treatment-related complication rate was higher in the RH group. Both recurrence-free survival (RFS) and overall survival (OS) rates of RH were significantly better than those of MWA. Multivariate analysis showed that MWA, early recurrence (within 24 months after initial resection), cirrhosis, and AFP >400 ng/ml were independent risk factors for poor prognoses of recurrent HCC. The stratified analysis demonstrated that MWA and RH had similar long-term outcomes in patients with early recurrence. Nevertheless, MWA had worse RFS and OS than RH in patients with late recurrence. The same results were obtained in the PSM analysis. CONCLUSION: The long-term outcomes of HCC patients with late recurrence were significantly better than those with early recurrence. RH should be the first choice for solitary small recurrent HCC patients with late recurrence, while MWA should be selected for those with early recurrence.


Asunto(s)
Carcinoma Hepatocelular , Ablación por Catéter , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Hepatectomía , Estudios Retrospectivos , Microondas/uso terapéutico , Puntaje de Propensión , Resultado del Tratamiento , Ablación por Catéter/métodos , Recurrencia Local de Neoplasia/cirugía
16.
Ann Surg Oncol ; 30(5): 2942-2953, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36352297

RESUMEN

BACKGROUND: An accurate recurrence risk assessment system and surveillance strategy for hepatoid adenocarcinoma of the stomach (HAS) remain poorly defined. This study aimed to develop a nomogram to predict postoperative recurrence of HAS and guide individually tailored surveillance strategies. METHODS: The study enrolled all patients with primary HAS who had undergone curative-intent resection at 14 institutions from 2004 to 2019. Clinicopathologic variables with statistical significance in the multivariate Cox regression were incorporated into a nomogram to build a recurrence predictive model. RESULTS: The nomogram of recurrence-free survival (RFS) based on independent prognostic factors, including age, preoperative carcinoembryonic antigen, number of examined lymph nodes, perineural invasion, and lymph node ratio, achieved a C-index of 0.723 (95% confidence interval [CI], 0.674-0.772) in the whole cohort, which was significantly higher than those of the eighth American Joint Committed on Cancer (AJCC) staging system (C-index, 0.629; 95% CI, 0.573-0.685; P < 0.001). The nomogram accurately stratified patients into low-, middle-, and high-risk groups of postoperative recurrence. The postoperative recurrence risk rates for patients in the middle- and high-risk groups were respectively 3 and 10 times higher than for the low-risk group. The patients in the middle- and high-risk groups showed more recurrence and metastasis, particularly multiple site metastasis, within 36 months after the operation than those in the low-risk group (low, 2.2%; middle, 8.6%; high, 24.0%; P = 0.003). CONCLUSIONS: The nomogram achieved good prediction of postoperative recurrence for the patients with HAS after radical resection. For the middle- and high-risk patients, more active surveillance and targeted examination methods should be adopted within 36 months after the operation, particularly for liver and multiple metastases.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Humanos , Nomogramas , Pronóstico , Adenocarcinoma/cirugía , Adenocarcinoma/patología , Estadificación de Neoplasias , Estudios Retrospectivos , Neoplasias Gástricas/patología , Recurrencia Local de Neoplasia/patología
17.
Comput Struct Biotechnol J ; 20: 5535-5546, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249560

RESUMEN

Lung adenocarcinoma is a malignancy with a low overall survival and a poor prognosis. Studies have shown that lung adenocarcinoma progression relates to locus-specific/global changes in histone modifications. To explore the relationship between histone modification and gene expression changes, we focused on 11 histone modifications and quantitatively analyzed their influences on gene expression. We found that, among the studied histone modifications, H3K79me2 displayed the greatest impact on gene expression regulation. Based on the Shannon entropy, 867 genes with differential H3K79me2 levels during tumorigenesis were identified. Enrichment analyses showed that these genes were involved in 16 common cancer pathways and 11 tumors and were target-regulated by trans-regulatory elements, such as Tp53 and WT1. Then, an open-source computational framework was presented (https://github.com/zlq-imu/Identification-of-potential-LUND-driver-genes). Twelve potential driver genes were extracted from the genes with differential H3K79me2 levels during tumorigenesis. The expression levels of these potential driver genes were significantly increased/decreased in tumor cells, as assayed by RT-qPCR. A risk score model comprising these driver genes was further constructed, and this model was strongly negatively associated with the overall survival of patients in different datasets. The proportional hazards assumption and outlier test indicated that this model could robustly distinguish patients with different survival rates. Immune analyses and responses to immunotherapeutic and chemotherapeutic agents showed that patients in the high and low-risk groups may have distinct tendencies for clinical selection. Finally, the regions with clear H3K79me2 signal changes on these driver genes were accurately identified. Our research may offer potential molecular biomarkers for lung adenocarcinoma treatment.

18.
Front Immunol ; 13: 977894, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36052090

RESUMEN

Background: Esophagogastric junction adenocarcinoma (EGJA) is a special malignant tumor with unknown biological behavior. PD-1 checkpoint inhibitors have been recommended as first-line treatment for advanced EGJA patients. However, the biomarkers for predicting immunotherapy response remain controversial. Methods: We identified stromal immune-related genes (SIRGs) by ESTIMATE from the TCGA-EGJA dataset and constructed a signature score. In addition, survival analysis was performed in both the TCGA cohort and GEO cohort. Subsequently, we explored the differences in tumor-infiltrating immune cells, immune subtypes, immune-related functions, tumor mutation burden (TMB), immune checkpoint gene expression, immunophenoscore (IPS) between the high SIRGs score and low SIRGs score groups. Finally, two validation cohorts of patients who had accepted immunotherapy was used to verify the value of SIRGs score in predicting immunotherapy response. Results: Eight of the SIRGs were selected by LASSO regression to construct a signature score (SIRGs score). Univariate and multivariate analyses in the TCGA and GEO cohort suggested that SIRGs score was an independent risk factor for the overall survival (OS) and it could increase the accuracy of clinical prediction models for survival. However, in the high SIRGs score group, patients had more immune cell infiltration, more active immune-related functions, higher immune checkpoint gene expression and higher IPS-PD1 and IPS-PD1-CTLA4 scores, which indicate a better response to immunotherapy. The external validation illustrated that high SIRGs score was significantly associated with immunotherapy response and immune checkpoint inhibitors (ICIs) can improve OS in patients with high SIRGs score. Conclusion: The SIRGs score may be a predictor of the prognosis and immune-therapy response for esophagogastric junction adenocarcinoma.


Asunto(s)
Adenocarcinoma , Inmunoterapia , Adenocarcinoma/terapia , Biomarcadores de Tumor/genética , Neoplasias Esofágicas , Unión Esofagogástrica , Humanos , Pronóstico
19.
Nucleic Acids Res ; 50(18): 10526-10543, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36134711

RESUMEN

Transforming growth factor ß (TGF-ß) superfamily proteins are potent regulators of cellular development and differentiation. Nodal/Activin/TGF-ß and BMP ligands are both present in the intra- and extracellular milieu during early development, and cross-talk between these two branches of developmental signaling is currently the subject of intense research focus. Here, we show that the Nodal induced lncRNA-Smad7 regulates cell fate determination via repression of BMP signaling in mouse embryonic stem cells (mESCs). Depletion of lncRNA-Smad7 dramatically impairs cardiomyocyte differentiation in mESCs. Moreover, lncRNA-Smad7 represses Bmp2 expression through binding with the Bmp2 promoter region via (CA)12-repeats that forms an R-loop. Importantly, Bmp2 knockdown rescues defects in cardiomyocyte differentiation induced by lncRNA-Smad7 knockdown. Hence, lncRNA-Smad7 antagonizes BMP signaling in mESCs, and similarly regulates cell fate determination between osteocyte and myocyte formation in C2C12 mouse myoblasts. Moreover, lncRNA-Smad7 associates with hnRNPK in mESCs and hnRNPK binds at the Bmp2 promoter, potentially contributing to Bmp2 expression repression. The antagonistic effects between Nodal/TGF-ß and BMP signaling via lncRNA-Smad7 described in this work provides a framework for understanding cell fate determination in early development.


Asunto(s)
ARN Largo no Codificante , Proteína smad7/metabolismo , Activinas/metabolismo , Activinas/farmacología , Animales , Diferenciación Celular , Ligandos , Ratones , ARN Largo no Codificante/metabolismo , Proteína smad7/genética , Proteína smad7/farmacología , Factor de Crecimiento Transformador beta/metabolismo
20.
Sensors (Basel) ; 22(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36015716

RESUMEN

We propose an efficient semi-analytical method capable of modeling the propagation of flexural waves on cracked plate structures with any forms of excitations, based on the same group of vibration characteristics and validated by a non-contact scanning Laser Doppler Vibrometer (LDV) system. The proposed modeling method is based on the superposition of the vibrational normal modes of the detected structure, which can be applied to analyze long-time and full-field transient wave propagations. By connecting the vibration-based transient model to a power flow analysis technique, we further analyze the transient waves on a cracked plate subjected to different excitation sources and show the influence of the damage event on the path of the propagating waves. The experimental results indicate that the proposed semi-analytical method can model the flexural waves, and through that, the crack information can be revealed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...